The Mole

Videos

**Make sure you get your daily work signed off on. That way, when we test you'll have the grade you earned instead of freaking out about 50's in the book.

#1 -- The Mole

#2 -- Particles Per Mole Video

#3 -- Molar Mass Conversion Video

- #4 -- Percent Composition Video
- #5 -- Calculating Empirical Formula

Practice Problems:

- Gram/Mole Conversions pg 86 Gram/Mole Conversions pg 87 pg 88 Conversions with Avagadro's number pg 233 Molar Mass Molar mass as a conversion factor pg 234 pg 235 Molar mass as a conversion factor Percent composition pg 237 pg 240-241 Emperical formulas pg 242 Molecular formulas
- Practice Sheets: <u>Grams to Mole Calculations</u> <u>Molar Mass Calculations</u> <u>Mole Calculations Wkst</u> <u>Moles/Molecules/Grams Conversions</u> <u>Moles Practice</u>

Labs:

Chalk Lab Bubble Gum Lab Mole Lab the Works

Activities:

Mole Airlines Flight Ebola Mole

Quizzes:

Particles per mole Gram mole conversions Molar mass as conversion factor. Percent composition Empirical and Molecular Formulas

0THE MOLE

How many molecules would be in 3 moles of water?	The mole (mol) is one of the seven base units in the SI system. It measures the The form in which a substance exists is its "	". Ila units, or anything else			
	Just as a dozen is 12 representative particles, a mole is	representative particles.			
	Ex. 1 mole Fe atoms = 6.02×10^{23} atoms of Fe 1 mole H ₂ O molecules = 6.02×10^{23} molecules of wa 1 mole NaCl formula units = 6.02×10^{23} NaCl formul 1 mole eggs = 6.02×10^{23} eggs	ter a units			
Write the memory tricks for remembering diatomic elements.	Diatomic Elements Certain elements are only stable in pairs or with other elements in a care called the There are 7 diatomic elements:	compound. These elements			
	(Memory trick: or)				
	Avogadro's Number				
	6.02×10^{23} is called Avogadro's number. It is named after Amadeo the 1800's that allowed 6.02×10^{23} to be calculated. The mole is the "chemist's dozen". It is a convenient way to count e atoms, molecules or ions.	Avogadro who did work in xtremely large numbers of			
	New Conversion Factor! $1 \text{ mole} = 6.02 \times 10^{23} \text{ representative}$	e particles			
	We work these problems using dimensional analysis.				
	Examples: How many moles are 1.20×10^{25} atoms of phosphorous?				
Your friend gives you a gold ring that contains 2.3 mol of atoms. How many atoms is this?	How many atoms are in 0.750 mol of Zn?				
	How many molecules are in 0.400 mol N ₂ O ₅ ?				
	How many moles are contained in 1.20 x 10 ²⁴ molecules CO ₂ ?				

	Gram atomic mass (gam) – atomic mass of an in grams -mass of one mole of atoms of a monatomic element -use the periodic table and take masses to 0.1 g					
	Ex. C = $12.0 \text{ g} = \text{mass of} __\a \text{ atoms}$ 12.0 g/mol is the gram atomic mass of $___$					
	There are two terms to describe the mass of a chemical compound; gram molecular mass or gram formula mass. We will most often use the term gram formula mass. Molar mass or are terms also used to mean the same thing.					
What is the gram	• <u>Gram molecular mass</u> (gmm) – mass of one mole of a					
of P ₂ O ₅ ?	Ex. 1 mol H ₂ O: 2 mol H =2 x 1.0 g H/mol = 2.0 g 1 mol O =1 x 16.0 g O/mol = $\frac{16.0 g}{18.0 g H_2O}$					
	Example What is the gram molecular mass of CH ₃ OH?					
	• <u>Gram formula mass</u> (gfm) -mass of one mole of an compound -sum of the atomic masses of each atom in a formula unit					
	Example What is the gfm of magnesium phosphate $(Mg_3(PO_4)_2)$?					
	What is the molar mass of ammonium sulfate ((NH ₄) ₂ SO ₄)?					
Write the two conversion factors we have discussed below. Show how they are related.	<u>Mole – Mass Conversions</u> New Conversion factor! 1 mol = gfm					
	Find the mass in grams of 3.32 mol of K. 3.32 mol K = ? g K Conversion factor: 1 mol K = 39.1 g (from periodic table)					
	Use dimensional analysis: $\frac{3.32 \text{ mol } \text{K} 39.1 \text{ g K}}{ 1 \text{ mol } \text{K}} = 1.30 \text{ x } 10^2 \text{ g K}$					
	Find the mass in grams of 15.0 mol of sulfuric acid (H_2SO_4).					

Find the number of moles in 11.0 g of methane (CH₄).

MULTI-STEP MOLE PROBLEMS:

Calculate the number of molecules present in 4.29 g of nitrogen dioxide (NO₂).

Calculate the number of moles of sulfur atoms present in 2.01g of sodium sulfide (Na₂S).

Calculate the mass in grams of 2.49×10^{20} carbon dioxide (CO₂) molecules.

Calculate the grams of carbon in 12.2 mol of sucrose, C₁₂H₂₂O₁₁.

Molar Volume of a Gas

The volume of a gas is usually measured at _____ and _____ atmosphere of pressure. This is called standard temperature and pressure (STP).

At STP, one mole of any gas has a volume of 22.4 L.

- 22.4 L is called the <u>molar volume</u> of a gas.
- 22.4 L of a gas at STP contains 6.02×10^{23} particles of the gas.
 - 22.4 L of a gas has a mass equal to the gfm of the gas.

New conversion factor!	1 mol of any gas at STP = 22.4 L		
	(for gases only)		

What is the volume (liters) at STP of 0.960 mol of methane, CH₄? 0.960 mol = ? L

At STP, how many moles are in 0.542 mL of neon gas?

Percent Composition

Relate the three conversion factors we have learned below.

(remember: percent =)
percent by mass of	in a compound

Two types of problems:

- Find the % composition for a compound that is formed from 28.0 g Fe and 8.0g O.
- What is the percent composition of calcium acetate (Ca(C₂H₃O₂)₂)?

% mass = $\left(\frac{\text{grams of element}}{\text{gfm of compound}}\right) \times 100$

CALCULATING EMPIRICAL FORMULAS

<u>Empirical formula</u> – formula that represents the lowest ______ various types of atoms in a compound

Steps to calculate empirical formula:

- 1. Find the mass of each element in a sample of the compound
- 2. Convert the mass to moles of each element
- 3. Simplify mole ratio (divide each mass by the smallest mass to get ratios of each element).

4. If your answers are not in whole numbers, you must multiply by 2,3,4,or 5 to get whole numbers.

5. Use mole ratio as subscripts in the formula

If given % composition, assume 100 g of compound.

A compound is 79.8% C and 20.2% H. Find its empirical formula.

Find the empirical formula for a compound made up of 26.7% P, 12.1% N and 61.2%Cl.

Empirical Formula Poem Percent to mass, Mass to mole, Divide by smallest, Round (or multiply) 'till whole

of the

Finding Molecular Formulas

- Molecular formulas are the ______ formulas. They may be the same as the empirical formula or a multiple of it.
- To find the multiple (n), take the gram formulas mass (gfm) and divide by the

 $n = \underline{gfm}$ efm

Multiply each subscript in the empirical formula by n to get the molecular formula.

A white powder is analyzed and found to have the empirical formula P_2O_5 . The compound has a molar mass of 283.9 g. What is the compound's molecular formula?

A compound used as an additive for gasoline to help prevent engine knock shows the following percentage composition:

71.65% Cl 24.27% C 4.07% H

The molar mass is known to be 98.96 g. Determine the empirical formula and the molecular formula for this compound.

Grams/Moles Calculations

Given the following, find the number of moles:

- 1) 30 grams of H_3PO_4
- 2) 25 grams of HF
- 3) 110 grams of NaHCO₃
- 4) 1.1 grams of $FeCl_3$
- 5) 987 grams of Ra(OH)₂
- 6) 564 grams of copper
- 7) 12.3 grams of CO₂
- 8) 89 grams of $Pb(CH_3COO)_4$

Given the following, find the number of grams:

- 9) 4 moles of Cu(CN)₂
- 10) 5.6 moles of C_6H_6
- 11) 21.3 moles of BaCO₃
- 12) 1.2 moles of (NH₄)₃PO₃
- 13) 9.3 x 10^{-3} moles of SmO
- 14) 6.6 moles of ZnO
- 15) 5.4 moles of K₂SO₄
- 16) 88.4 moles of NI₃

Grams/Moles Calculations – Answer Key

Given the following, find the number of moles:

- 1) 30 grams of H_3PO_4 0.31 moles
- 2) 25 grams of HF **1.25 moles**
- 3) 110 grams of NaHCO₃ 1.31 moles
- 4) 1.1 grams of FeCl₃ 0.0068 moles
- 5) 987 grams of Ra(OH)₂ 3.80 moles
- 6) 564 grams of copper **0.11 moles**
- 7) 12.3 grams of CO₂ 0.28 moles
- 8) 89 grams of Pb(CH₃COO)₄ 0.20 moles

Given the following, find the number of grams:

- 9) 4 moles of Cu(CN)₂ 462 grams
- 10) 5.6 moles of C₆H₆ **436.8 grams**
- 11) 21.3 moles of BaCO₃ 4202.5 grams
- 12) 1.2 moles of (NH₄)₃PO₃ 159.6 grams
- 13) 9.3 x 10^{-3} moles of SmO **1.5 grams**
- 14) 6.6 moles of ZnO 537.2 grams
- 15) 5.4 moles of K₂SO₄ 941.2 grams
- 16) 88.4 moles of NI₃ **34679.3 grams**

Molar Mass Worksheet

Calculate the molar mass of the following chemicals:

- 1) Cl₂
- 2) KOH
- 3) BeCl₂
- 4) FeCl₃
- 5) BF₃
- 6) CCl₂F₂
- 7) Mg(OH)₂
- 8) UF₆
- 9) SO₂
- 10) H₃PO₄
- 11) (NH₄)₂SO₄
- 12) CH₃COOH
- 13) Pb(NO₃)₂
- 14) Ga₂(SO₃)₃

Molar Mass Worksheet – Answer Key

Calculate the molar mass of the following chemicals:

- 1) Cl₂ **71 g/mol**
- 2) KOH **56.1 g/mol**
- 3) BeCl₂ 80 g/mol
- 4) FeCl₃ **162.3 g/mol**
- 5) BF₃ 67.8 g/mol
- 6) CCI_2F_2 **121 g/mol**
- 7) Mg(OH)₂ 58.3 g/mol
- 8) UF₆ **352 g/mol**
- 9) SO₂ 64.1 g/mol
- 10) H₃PO₄ 98 g/mol
- 11) (NH₄)₂SO₄ **132.1 g/mol**
- 12) CH₃COOH **60** g/mol
- 13) Pb(NO₃)₂ 331.2 g/mol
- 14) Ga₂(SO₃)₃ **379.7** g/mol

Mole Calculation Worksheet

- 1) How many moles are in 15 grams of lithium?
- 2) How many grams are in 2.4 moles of sulfur?
- 3) How many moles are in 22 grams of argon?
- 4) How many grams are in 88.1 moles of magnesium?
- 5) How many moles are in 2.3 grams of phosphorus?
- 6) How many grams are in 11.9 moles of chromium?
- 7) How many moles are in 9.8 grams of calcium?
- 8) How many grams are in 238 moles of arsenic?

What are the molecular weights of the following compounds?

- 9) NaOH 12) H₃PO₄
- 10) H₂O 13) Mn₂Se₇
- 11) MgCl₂ 14) (NH₄)₂SO₄

- 15) How many grams are in 4.5 moles of sodium fluoride, NaF?
- 16) How many moles are in 98.3 grams of aluminum hydroxide, $AI(OH)_3$?
- 17) How many grams are in 0.02 moles of beryllium iodide, Bel_2 ?
- 18) How many moles are in 68 grams of copper (II) hydroxide, $Cu(OH)_2$?
- 19) How many grams are in 3.3 moles of potassium sulfide, K_2S ?
- 20) How many moles are in 1.2 x 10^3 grams of ammonia, NH₃?
- 21) How many grams are in 2.3 x 10^{-4} moles of calcium phosphate, Ca₃(PO₃)₂?
- 22) How many moles are in 3.4 x 10^{-7} grams of silicon dioxide, SiO₂?
- 23) How many grams are in 1.11 moles of manganese sulfate, $Mn_3(SO_4)_7$?

Mole Calculation Worksheet – Answer Key

1)	How many moles are in 15 grams of lithium? 0.46 moles						
2)	How many grams are in 2.4 moles of sulfur? 77.0 grams						
3)	How many moles are in 22 grams of argon? 0.55 moles						
4)	How ma	iny grams are in 88.1	moles	of magne	siur	n? 2141 grams	
5)	How many moles are in 2.3 grams of phosphorus? 0.074 moles						
6)	How ma	iny grams are in 11.9	moles	of chromi	um?	618.8 grams	
7)	How many moles are in 9.8 grams of calcium? 0.24 moles						
8)	How many grams are in 238 moles of arsenic? 17,826 grams						
What are the molecular weights of the following compounds?							
9)	NaOH	40.1 grams	12)	H_3PO_4	<mark>9</mark> 8	.0 grams	
10)	H ₂ O	18.0 grams	13)	Mn_2Se_7	66	3.0 grams	
11)	MgCl ₂	95.3 grams	14)	(NH ₄) ₂ SC) ₄	132.1 grams	
15)	How ma	iny grams are in 4.5 r	moles o	of sodium f	fluoi	ide, NaF? 189 grams	
16)	How many moles are in 98.3 grams of aluminum hydroxide, Al(OH) ₃ ? 1.26 moles						
17)	How many grams are in 0.02 moles of beryllium iodide, Bel ₂ ? 5.2 grams						
18)	How many moles are in 68 grams of copper (II) hydroxide, Cu(OH) ₂ ? 0.70 moles						
19)	How many grams are in 3.3 moles of potassium sulfide, K ₂ S? 364.0 grams						
20)	How many moles are in 1.2 x 10 ³ grams of ammonia, NH ₃ ? 70.6 moles						
21)	How many grams are in 2.3 x 10^{-4} moles of calcium phosphate, Ca ₃ (PO ₃) ₂ ? 0.064 grams						
22)	How many moles are in 3.4 x 10 ⁻⁷ grams of silicon dioxide, SiO ₂ ? 5.66 x 10⁻⁹ moles						
				-			

23) How many grams are in 1.11 moles of manganese sulfate, $Mn_3(SO_4)_7$? 929.5 grams

Moles, Molecules, and Grams Worksheet

- 1) How many molecules are there in 24 grams of FeF_3 ?
- 2) How many molecules are there in 450 grams of Na_2SO_4 ?
- 3) How many grams are there in 2.3 x 10^{24} atoms of silver?
- 4) How many grams are there in 7.4 x 10^{23} molecules of AgNO₃?
- 5) How many grams are there in 7.5 x 10^{23} molecules of H₂SO₄?
- 6) How many molecules are there in 122 grams of $Cu(NO_3)_2$?
- 7) How many grams are there in 9.4 x 10^{25} molecules of H₂?
- 8) How many molecules are there in 230 grams of $CoCl_2$?

- 9) How many molecules are there in 2.3 grams of NH₄SO₂?
- 10) How many grams are there in 3.3 x 10^{23} molecules of N₂I₆?
- 11) How many molecules are there in 200 grams of CCl_4 ?
- 12) How many grams are there in 1×10^{24} molecules of BCl₃?
- 13) How many grams are there in 4.5 x 10^{22} molecules of Ba(NO₂)₂?
- 14) How many molecules are there in 9.34 grams of LiCl?
- 15) How many grams do 4.3×10^{21} molecules of UF₆ weigh?
- 16) How many molecules are there in 230 grams of NH_4OH ?

Moles, Molecules, and Grams Worksheet – Answer Key

- How many molecules are there in 24 grams of FeF₃? 1.28 x 10²³ molecules
- How many molecules are there in 450 grams of Na₂SO₄? 1.91 x 10²⁴ molecules
- 3) How many grams are there in 2.3 x 10^{24} atoms of silver? **421 grams**
- How many grams are there in 7.4 x 10²³ molecules of AgNO₃? 209 grams
- 5) How many grams are there in 7.5 x 10^{23} molecules of H₂SO₄? **122 grams**
- 6) How many molecules are there in 122 grams of Cu(NO₃)₂? 3.92 x 10²³ molecules
- 7) How many grams are there in 9.4 x 10^{25} molecules of H₂? **312 grams**
- How many molecules are there in 230 grams of CoCl₂? 1.07 x 10²⁴ molecules
- 9) How many molecules are there in 2.3 grams of NH₄SO₂? 1.69 x 10²² molecules
- 10) How many grams are there in 3.3×10^{23} molecules of N₂I₆? **430 grams**
- How many molecules are there in 200 grams of CCl₄? 7.82 x 10²³ molecules
- 12) How many grams are there in 1×10^{24} molecules of BCI₃? **195 grams**
- 13) How many grams are there in 4.5×10^{22} molecules of Ba(NO₂)₂? 17.1 grams
- How many molecules are there in 9.34 grams of LiCl? 1.33 x 10²³ molecules
- 15) How many grams do 4.3×10^{21} molecules of UF₆ weigh? **2.51 grams**
- 16) How many molecules are there in 230 grams of NH₄OH? 3.96 x 10²⁴ molecules

Mole Problem

Using your knowledge of mole calculations and unit conversions, determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C_6H_{14} and that the density of gasoline is approximately 0.85 grams/mL.

There are ______ atoms in 1 gallon of gasoline.

Mole Problem – Solution

Using your knowledge of mole calculations and unit conversions, determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C_6H_{14} and that the density of gasoline is approximately 0.8500 grams/mL.

Using a conversion factor of 3785 mL per gallon, we can determine that the mass of gasoline in one gallon is 3785 mL x 0.8500 g/mL = 3217 grams.

Because the molar mass of C_6H_{14} is 86 g/mole, there are 3217 / 86 moles of gasoline molecules, or 37.4 moles of molecules present.

Multiplying 37.4 x 20 (the number of atoms per mole of gasoline), there are 748 moles of atoms.

Finally, multiplying 748 moles of atoms by 6.02×10^{23} atoms/mole, we can find that there are 4.50 x 10^{25} atoms present in the sample.

There are 4.50×10^{25} atoms in 1 gallon of gasoline.

Moles Worksheet

- 1) Define "mole".
- 2) How many moles are present in 34 grams of $Cu(OH)_2$?
- 3) How many moles are present in 2.45 x 10^{23} molecules of CH₄?
- 4) How many grams are there in 3.4 x 10^{24} molecules of NH₃?
- 5) How much does 4.2 moles of Ca(NO₃)₂ weigh?
- 6) What is the molar mass of MgO?
- 7) How are the terms "molar mass" and "atomic mass" different from one another?
- 8) Which is a better unit for expressing molar mass, "amu" or "grams/mole"?

Moles Worksheet (Solutions)

- Define "mole".
 6.02 x 10²³ of anything, usually atoms or molecules.
- How many moles are present in 34 grams of Cu(OH)₂?
 0.35 moles
- 3) How many moles are present in 2.45 x 10^{23} molecules of CH₄? 0.41 moles
- 4) How many grams are there in 3.4 x 10^{24} molecules of NH₃? 96 grams
- 5) How much does 4.2 moles of Ca(NO₃)₂ weigh? 689 grams
- 6) What is the molar mass of MgO?40.3 grams/mole
- 7) How are the terms "molar mass" and "atomic mass" different from one another?
 "Molar mass" is used to describe the mass of one mole of a chemical compound, while "atomic mass" is used to describe the mass of one mole of an element or the mass of one atom of an element.
- 8) Which is a better unit for expressing molar mass, "amu" or "grams/mole"? "Grams/mole" is better, because any macroscopic amount of a substance is better expressed in grams than amu.

Period _____

THA MOLE! Worksheets

7.1 1.	Find the molar mass of each compound. (Show your work!) a. Li ₂ S	
	b. FeCl ₃	
	c. Ca(OH) ₂	
2.	Define the following using your own words. a. atom:	
	b. molecule:	
	c. formula unit:	
3	Label each of the following as atom molecule or formula unit	
5.	a. oxygen c. sulfur dioxide	
	b. sodium sulfide d. potassium	
4.	How many moles is each of the following?	
	a. 1.50×10^{23} molecules NH ₃	
	b. 1 billion (1 X 10^9) molecules O ₂	
	c. 6.02×10^{22} molecules Br ₂	
5.	Which contains more atoms? Justify your answer (<i>hint remember definitions from</i> $1.00 \text{ mol } H_2O_2$, 1.00 mol C_2H_6 , or 1.00 mol CO?	your notes)
		¥
7.2		
1.	Find the mass of each substance:	
	a. $1.50 \text{ mol } C_5 H_{12}$	
	b. 14.4 mol F ₂	
	c. $7.00 \text{ mol } H_2O_2$	

d. 0.780 mol NaOH

Name _____

2. Calculate the volume of each of the following gases at STP:

a. 7.9 mol Ar

- b. 0.45 mol O₂
- c. 1.23 mol C₂H₆

7.3		Write the 3 mole conversion factors:			2
	1 mol = L @ STP	1 mol = g	1 mol =	_ particles	
	 Calculate the percent com a. H₂S 	position of each compound:			
	b. (NH4)2C2O4				

- c. Mg(OH)₂
- 2. Using your answers from #2, calculate the number of grams of these elements: a. sulfur in 7.23 g H_2S
 - b. nitrogen in 24.0 g $(NH_4)_2C_2O_4$
 - c. magnesium in 94.2 g Mg(OH)₂

Empirical and Molecular Formulas Worksheet

1. The molecular formulas of some substances are as follows. Write their empirical formulas.

- a. Acetylene, C₂H₂ (used in oxyacetylene torches)
- b. Glucose, C₆H₁₂O₆ (the chief sugar in blood)
- c. Octane, C₈H₁₈ (a component of gasoline)
- d. Ethylene glycol is C₂H₆O₂ (antifreeze)

· @ · 1

2. Determine the empirical formula of a compound that contains 36.5% sodium, 25.4% sulfur, and 38.1% oxygen.

3. Nitrogen and oxygen form an extensive series of oxides with the general formula $N_x O_y$. One of them is a blue solid that comes apart, reversibly, in the gas phase. It contains 36.84% N. What is the empirical formula of this oxide?

4. An organic compound has an empirical formula of CH and a molecular mass of 78 g/mol. What is the molecular formula?

5. A well-known reagent in analytical chemistry, dimethylglyoxime, has the empirical formula C_2H_4NO . If its molar mass is 116.1 g/mol, what is the molecular formula of the compound?

6. Determine the molecular formula for each compound: (remember that you need to find empirical formula first!)

a. 94.1% O and 5.9% H; molar mass = 34 g

b. 40.0% C, 6.6% H, and 53.4% O; molar mass = 120 g

